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High-order curvatures and harmonicity regression
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Abstract. We consider curvaturesκi of all orders, as defined by the generalized Frenet–Serret
formulae, along the trajectories of a classical Hamiltonian system withN degrees of freedom.
In the spirit of previous experiments on the first two of them, time averages are numerically
computed for the curvatures up to fifth order and for the microcanonical density in a typical
anharmonic system (the FPU quartic chain), with checks in other models. Neat breakdowns of
harmonic-like behaviour define thresholds to anharmonicity for everyκi at distinct values̃ui of
the order parameter (the energy densityu). The threshold̃ui at fixed orderi is independent of
the totalN , and it rapidly decreases asi grows. However, all curvatures are simultaneously
sensitive or not to the initial conditions, foru < ũ1 or u > ũ1 respectively, confirming the
previous identification of̃u1 as an efficient indicator of the strong stochasticity transition. This
phenomenology, which is discussed within the weak/strong stochasticity problem, gives a new
insight into the progressive enforcement of a harmonic-like structure asu decreases.

1. Introduction

In [1], indicators of the deviations from a harmonic-like behaviour of Hamiltonian models
(Fermi–Pasta–Ulam (FPU), Lennard–Jones (LJ), Toda, etc) have been introduced. They are
based on the Frenet–Serret curvatureκ and torsionτ of trajectories in the phase space, and
on the microcanonical densityρ. The formers have a clear geometrical character, related to
the shape of the trajectory; the latter admits both geometrical and dynamical interpretations,
since it may be associated to the steepness of the energy surface and to the phase velocity.
The microcanonical density is indeed given by the inverse modulus of the gradient of the
energy surface and, equivalently, by the the sojourn time of the phase point along the
trajectory on the same surface.

It has been found that these anharmonicity indicators undergo a drastic change
(harmonicity breakdown) in a certain range of values of the order parameter, the specific
energyu. Moreover, for the non-integrable systems, below or above this range the indicators
result to be sensitive or not, respectively, to the initial conditions. Actually, the discussed
range coincides with the so-called strong stochasticity threshold (SST) elsewhere established
by equipartition-based methods or Lyapunov exponents, thus proving the new method to be
an alternative approach to the SST. In this context, its peculiarity with respect to standard
methods consists of the fast and precise localization of the breakdown range, leaving only
a few long experiments for the necessary checks on initial conditions sensitivity. Some
references relevant for this discussion are [2–11].
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Other geometrical approaches to the study of stochasticity have been proposed, and we
refer in particular to those based on the Ricci and scalar curvatures in the configurations
space [12–14]. Basically, they use intrinsic (i.e. independent of coordinates) observables,
giving evidence to possible sources of stochasticity, such as abundance of subdomains
with negative (Ricci) curvature and parametric resonance. A ‘weak chaos’ assumption is
made there when, for instance, the authors compare dynamical to Monte Carlo simulations
evenbelow the SST. This approach, apart from the neatness of the numerical indications,
offers the advantage of important connections to other methods and concepts (e.g. Lyapunov
exponents).

The geometrical character of the analysis developed in [1] is to be intended differently:
actually, coordinate-dependent observables have been chosen to give evidence to thepossible
stable vicinity to equivalent harmonic trajectories. This means to explore thepractical
persistence of a toroidal structure in the phase space, by observing the consequences of
such ‘effective’ surfaces on the observables. In doing this, no assumption has been made
about the existence of weak chaos, whose possible relevance for statistics in our opinion is
still to be understood.

Anyway, the main question in [1] was the very existence of a stochasticity transition.
For this reason, an experimental fact was remarked there but not further studied: by looking
more closely at the range of transition values foru, while the behaviour ofρ andκ looked
very similar to each other, there was a systematic ordering of the transition values obtained
via κ or τ . Precisely, the second one was always smaller.

Our intention here is to understand the true significance and implications of such a
fine structure, by considering, as a starting point, the natural extension of the previous
observables: as it is well known, for a curve inRn there aren − 1 curvatures{κi}, the
standard curvature and torsion being the first two of them (κ ≡ κ1, τ ≡ κ2). By this
sequence of observables a rich structure in the non-stochastic region of the phase space
appears, in the form of a sequence of harmonicity thresholdsũ1, ũ2, ũ3, . . ., one for each
observableκ1, κ2, κ3, . . .. This means that the consolidation of harmonicity takes place
progressively through a sequence of steps. Even if not a true discontinuity, this introduces
a discretized degree of harmonicity—and, consequently, of order—directly measured on
the trajectories. An interesting point is that this structure is independent ofN , also
quantitatively.

We observe that while stochasticity implies the destruction of harmonic trajectories,
the progressive vanishing of harmonicity in itself does not imply stochasticity, as the Toda
counterexample shows. But, in contrast, the persistence of harmonicity is a strong indication
against a genuine stochasticity. In other words, harmonicity is a sufficient but non-necessary
criterion of non-stochasticity, and the higher and higher degree of harmonicity corroborates
the idea of growing difficulties for an erratic behaviour. Also the independence ofN is
coherent with this perspective. In this sense, even if the persistence of a harmonic structure
does not exclude, in principle, the existence of Arnol’d diffusion, topological transitivity
and, consequently, weak chaos, our experiments support the possibility that the SST is the
only transition relevant for statistical mechanics.

In conclusion, the method developed here not only emphasizes the previous results—
coincidence of SST andκ1 harmonicity breakdown—but proves able, in addition, to
characterize the degree of order, and implicitly what weak chaos could mean. The onset
of order exhibits a structure much more complicated than the simple connection to theũ1

threshold. The method is a non-perturbative one, since it does not directly care about the
existence or destruction or deformed KAM tori when a certain order parameter is modified.
Thus, with respect to the delicate task of following perturbatively the persistence of quasi-
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integrability, this approach offers the advantage of treating directly the consequences entailed
by the dynamics on the observables. Moreover, it is mathematically simple.

2. Frenet–Serret equations, models and observables

In the Euclidean spaceRn of coordinatesx1, x2, . . . , xn , consider a curve0(s) as a function
of the curvilinear coordinate

s =
∫ {x̄i }

0
ds =

∫ {x̄i }
0

√
dx2

1 + dx2
2 + . . .+ dx2

n
. (1)

If the curve isCn in s with n linearly independent derivatives, it locally defines a complete
orthonormal system of vectors, iteratively obtained by the equations:

κivi+1 = dvi
ds
+ κi−1vi−1 i = 1, . . . , n− 1 (2)

with:

|v1| = |v2| = . . . = |vn | = 1 κ0v0 = 0 v1 = d0

ds
. (3)

(See for example [15].) This is equivalent to defining the versorsvi by the usual Gram–
Schmidt orthonormalization of the derivatives. Forn = 3 equations (2) are the standard
Frenet–Serret relations, withv1 = t,v2 = n,v3 = b, κ1 = k, κ2 = τ ; the vectorst,n, b
are the tangent, normal and binormal versors, andk, τ the usual curvature and torsion. The
curvature measures the variation of the tangent versor, whereas the torsion measures the
variation of the osculating plane52.

In the general case, theith curvatureκi measures the istantaneous variation along the
motion of thei-dimensional manifold5i , defined by the versors{v1,v2, . . . ,vi} outside
5i itself. From equation (2), it follows that the firsti − 1 versorsv1,v2, . . . ,vi−1 move
inside the manifold, and onlyvi gains the contributionκivi+1 outside of5i . Alternatively,
the variation of the manifold5i can also be seen through the variation of its normal, as
obtained by looking at two consecutive FS formulae projected on the plane{vi ,vi+1}:

(
d

ds
vi

)∣∣∣∣
{i,i+1}

= κivi+1(
d

ds
vi+1

)∣∣∣∣
{i,i+1}

= −κivi .
(4)

These equations reflect the equality of the triangles defined by the versorsvi andvi+1 and
by their infinitesimal variations on the plane during the motion.

Actually, we are interested in curves that are solutions of Hamiltonian systems. Since
this paper is an extension of [1], we refer to it for details on this point. For reading
convenience we only recall some definitions, related to one-dimensional chains ofN

particles with unitary mass, whose trajectories develop in a 2N -dimensional phase space.
The harmonic Lagrangian is:

L0(x) = K − χV2 = 1

2

N∑
j=1

ẋ2
j −

χ

2

N∑
j=1

(xj − xj+1)
2. (5)

The FPU system has the anharmonic potential:

εV4(x) =
ε

4

N∑
j=1

(xj − xj+1)
4 (x1 = xN+1). (6)
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The LJ and Toda systems are described by the potentials:

V
LJ
= 4ε̂

N∑
j=0

[(
σ

xj − xj+1+ xeq

)12

−
(

σ

xj − xj+1+ xeq

)6
]
+ (N + 1)ε

(x0 = xN+1 = 0) (7)

and

V
T
= α

N∑
j=0

(e−β(xj−xj+1) + γ (xj − xj+1)) (x0 = xN+1 = 0) (8)

respectively. Note thatV
LJ

andV
T

include also the harmonic potential of the Lagrangian (5).
Actually, the boundary conditions have been proven to be non-relevant for the properties
we are dealing with.

In the canonical homogeneous coordinates(p, q), the harmonic Hamiltonian reads:

H0(p, q) = 1

2

N∑
k=1

ωk(p
2
k + q2

k ) =
N∑
k=1

Ek (9)

whereEk denotes the energy of thekth harmonic mode. The frequencies with periodic
boundary conditions are twofold degenerate, and are given by:

ωk = 2
√
χ sin

((k − 1)π)

N
(10)

while those with fixed boundary conditions are non-degenerate, and read:

ωk = 2
√
χ sin

kπ

2(N + 1)
. (11)

With homogeneous canonical coordinates(p, q) the differential of the curvilinear
coordinate along a trajectory in the phase space is:

ds =
( N∑
k=1

(dp2
k + dq2

k )

)1
2

(12)

the tangent versor is given by

t = v1 = {dp1/ds, . . . ,dpN/ds, dq1/ds, . . . ,dqN/ds} (13)

and the other quantities follow directly from FS equations. We have made experiments
(with increasing numerical difficulties) on the first five curvatures. Further, we considered
the inverse of the velocity along the trajectory, i.e. the microcanonical density:

ρ = 1

|∇H(p, q)| =
∣∣∣∣d0dt

∣∣∣∣−1

= dt

ds
= |v|−1 (14)

wherev denotes the phase space velocity.
In the harmonic limit, higher curvatures can be obtained by induction from the explicit

expressions of the first vectors:

v1|k = ρωk(−qk, pk) κ1v2|k = (ρωk)2(−pk,−qk)
κ2v3|k = ((ρωk)3/k1− κ1ρωk)(qk,−pk).

(15)

In fact, all the vectors have the same structure:

κivi+1|k = ξki Wik (16)



High-order curvatures and harmonicity regression 7013

with
W1k = (−pk,−qk) W2k = (qk,−pk)
W3k = (pk, qk) W4k = (−qk, pk)

(17)

and further on with periodicity of 4, and with the functionsξki satisfying the recurrence
relation:

ξki =
ρωk

κi−1
ξki−1−

κi−1

κi−2
ξki−2. (18)

From (16) and (17) it follows:

|κi |2 =
N∑
k=1

|ξki |2(p2
k + q2

k ). (19)

The above equations state that all the harmonic curvatures are dimensionally homogeneous
to ρωk, and moreover that they have the same dependence on the energy asρ has.

We give the explicit formulae of microcanonical density and curvatures up to order five:

ρ =
[

2
∑
k

ωkEk

]− 1
2

|κ1| = ρ
[

2
∑
k

ωk(ωkρ)
2Ek

] 1
2

|κ2| = ρ
[

2
∑
k

ωk

(
1

κ1

[
(ωkρ)

2− κ2
1

])2

Ek

] 1
2

|κ3| = ρ
[

2
∑
k

ωk

(
1

κ2κ1

[
(ωkρ)

3− (κ2
2 + κ2

1)ωkρ

])2

Ek

] 1
2

|κ4| = ρ
[

2
∑
k

ωk

(
1

κ3κ2κ1

[
(ωkρ)

4− (κ2
3 + κ2

2 + κ2
1)(ωkρ)

2+ κ2
3κ

2
1

])2

Ek

] 1
2

|κ5| = ρ
[

2
∑
k

ωk

(
1

κ4κ3κ2κ1

[
(ωkρ)

5− (κ2
4 + κ2

3 + κ2
2 + κ2

1)(ωkρ)
3

+(κ2
4κ

2
2 + κ2

4κ
2
1 + κ2

3κ
2
1)ωkρ

])2

Ek

] 1
2

.

(20)

From a direct inspection of (20) one can check that, as expected, the microcanonical density
and all the harmonic curvatures behave asE−1/2 or u−1/2, for a linear rescaling of the
harmonic energiesEk. By taking this behaviour into account in the harmonic limit, we can
normalize the observables by defining

κ
(n)
i = κi/ρ ρ(n) = ρ/E− 1

2 . (21)

These new observables are therefore constant inu in the harmonic system, depending on
the initial conditions only through the ratiosEk/E. Therefore,at all energies, the initial
conditions which keep such ratios fixed, provide the same harmonic reference values.

For the different normalizations of theκi and ρ there are two reasons: the first is
empirical, as explained in [1], because the normalizations byρ emphasize the deviations
from harmonicity. The second reason is formal: taking into accountρ = dt/ds, we may
write the FS formulae in the parametert :

dvi
dt
= κi

ρ
vi+1− κi−1

ρ
vi−1 = κ(n)i vi+1− κ(n)i−1vi−1 (22)
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where normalized curvatures only appear. The third of conditions (3) now reads:

d0

dt
= 1

ρ
v1 (23)

which provides the complete vector form of equation (14), further justifying our interest in
the microcanonical density.

For each observablesκi, ρ, κ
(n)
i , ρ(n), we evaluate time averages along the orbit, up to

a timeT that we choose big enough to stabilize the data:

〈f 〉 = 1

T

∫ T

0
f (p(t), q(t))dt. (24)

The normalization could be evaluated by the ratios of the averaged values, or by averaging
the ratios. We have followed the first way for simplicity, after checking the practical
irrelevance of the choice on the results.

3. Numerical experiments and results

As in [1], the simulations have been performed by using in (5)–(8) the following values of
the parameters:χ = 1, ε = 0.1, σ = 1, ε̂ = 27.5, xeq = 2

1
6σ , β = −2−1/6, γ = eβ and

α = 3.76.
The number of degrees of freedomN ranges from 32 to 4096. We report the results

referring toN = 512 only, since all the essential features are independent ofN . For the
FPU system, most of the experiments are performed on orbits corresponding to 800 of the
shortest harmonic periods, and by averaging up to 5000 instantaneous values. Checks up
to 8 times longer have been done for the averages, and even longer for the analysis of
the dependence on the initial conditions. These times can be reduced for the Toda system,
since, as expected, the stabilization is quite good even for short orbits. The specific energy
u ranges from 3×10−5 to 30. The integration routine is a standard fifth order Runge–Kutta,
and the integration steps have been chosen in order to ensure a good energy conservation
(one part over 106, in the worst case). The Thinking Machine CM2 of the University of
Parma was used.

All the experiments were performed with random initial conditions on the{p} and the
{q} variables, sometimes with a further proportionality factor between them. By rescaling
the variables we perform experiments at different energiesE with fixed ratiosEk/E, and
therefore with the same harmonic reference values of our normalized observables, as noticed
after (21). We speak of a single class of initial conditions for different energies when they
are obtained by the previous rescaling.

Figure 1, that also recovers some of the results obtained in [1], exhibits the final, well
stabilized time averages ofρ(n) and κ(n)i (i = 1, . . . ,5) versusu, in the FPU system. The
anharmonicity thresholds̃ui may be easily read. We obtain them through the crossover
of two regimes: the first is the quasiharmonic one, the second is marked by a sudden
increase of the anharmonicity up to a ‘saturation’ recognized in a flex point. The valueũi is
therefore the specific energy at the intersection between the harmonic straight line and the
tangent in the flex. Evidently, such a value can be defined up to a certain approximation,
and nevertheless the orderingũi > ũi+1 is clearly established, as much as the coincidence
(already noticed in [1]) of̃u1 with the harmonicity breakdown forρ, say ũρ , and with the
SST obtained through other methods. In the figure we report the results referring, for every
u, to three classes of initial conditions, whose role is discussed below.
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Figure 1. For three initial conditions, plots of time averaged and normalizedκ1, . . . , κ5 andρ
versusu, for the FPU model withN = 512. The total integration time corresponds to 800 of
the shortest harmonic periods. The averages run over 5000 instantaneous values.

Figure 2. For a single initial condition, averaged and normalizedκ1, . . . , κ5 andρ are plotted,
after further normalization (indicated by the bar) to the harmonic limit ofκ1

√
u (indicated by

the straight line). Note the scale of the dependent variable, linear and nearly 300 times larger
than in figure 1.

The evidence of the regression appears in figure 2, where, for a single class of initial
conditions, we plot the same quantities of figure 1 after a further normalization that identifies
the harmonic limits ofκ(n)2 , . . . , κ

(n)

5 andρ(n) with the harmonic limit ofκ1
√
u. Thanks to
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Figure 3. Time behaviour for averaged normalizedκ5 versus averaging time, for four initial
conditions above its harmonicity breakdown (u = 0.01) but below breakdowns forκ1, . . . , κ4

andρ. The evolution length is 8 times longer than in figure 1.

the amplification of the observables over a linear and larger scale, beside the regression it
is possible to appreciate a rough equispacing between the harmonicity breakdowns.

Supposing now that the relatioñui > ũi+1 might be extrapolated for alli, a question
arises: Does the valuẽui mark a stochasticity threshold for the variableκi? In other
words: What happens at a valueu where some of the curvatures, sayκ1, . . . , κj , are still
quasiharmonic and the others,κj+1, κj+2, . . . have already lost the reference to the harmonic
value? To answer this question, we checked the time behaviour of the averages over long
orbits starting from several initial conditions atu = 0.01. Indeed, from figure 1, it results
that κ5 has already passed its breakdown value, whereasκ1, . . . , κ4 did not. Figure 3
exhibits the time dependence of the averagedκ5 over long orbits (8 times longer than the
orbits used in figure 1) for four initial conditions: stabilization takes place over distinct final
values. Equivalent results, of course, hold for the lower-order curvatures. This means that
the harmonicity breakdowns do not imply any stochasticization, and that foru < ũ1 the
FPU system behaves as a non-ergodic one (see the Toda system below). Therefore,ũ1 is
qualitatively different from other thresholds. The onset of stochasticity atu > ũ1 has been
checked with the expected result: orbits starting from different initial conditions collapse
into a unique final value. This appears in figure 4 for three initial conditions and the same
total integration time as in figures 1 and 2.

Numerical experiments on the LJ chain present the same phenomenology, extending the
results already obtained on the first two curvatures. Furthermore, in order to distinguish
between harmonicity breakdowns and onset of stochasticity, experiments have been repeated
on the integrable Toda chain. Figure 5 corresponds to figure 1 for this system: once again
we observe a regression for the harmonicity breakdowns. In this case, however,ũ1 does not
have any peculiarity: there is a stable dependence on the initial conditions for all curvatures
and energies. Therefore we do not report the time behaviours of observables, similar to
those of figure 3, but even more regular.
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Figure 4. Time behaviour for averaged normalizedκ5 versus averaging time for three initial
conditions, at energy abovẽu1 (u = 10) with parameters as in figure 1.

Figure 5. For three initial conditions, plots of time averaged and normalizedκ1, . . . , κ4 and
ρ versusu for the Toda model withN = 512. The last curvatureκ5 is omitted because of
instabilities in numerical simulations.

We recall that, as in [1], the parameters of the Toda model have been tuned up in order
to make comparable the values ofũ1 in this system and in the FPU system: the coincidence
is therefore a matter of choice, not a result. (By choosing the parameters in such a way as
to impose the coincidence of the harmonic limits, the valueũ1 for Toda would be indeed
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two orders of magnitude greater than the corresponding value for FPU.) In figure 5 it seems
that curves corresponding to different initial conditions melt together aroundũ1, before
separating again: but this is only an accident, and other initial conditions would not show
this phenomenon.

For the FPU and the LJ systems, the regression of the harmonicity breakdownsũi , as
the orderi of curvatureκi grows, displays in conclusion the following features.

F1—At any order, the valuẽui depends oni but it is independent of the totalN : there
is therefore evidence that it could persist in the thermodynamic limit.

F2—The empirical relaxation time required to establish the valueũi within a fixed
precision, is roughly independent of the totalN and alsoi.

F3—Looking at the time behaviours, aboveũ1 all the curvatures lose the memory of
the initial conditions, while below̃u1 all of them keep this memory.

F4—The transition values̃ui show a clear tendency to decrease. Fori = 1, . . . ,5 they
appear roughly equispaced in the log scale, i.e. exponentially decreasing. We note that, by
the iteration of FS equations, everyκi contributes to all subsequent curvatures; therefore the
harmonicity breakdown forκi implies that all higher curvatures are no more harmonic. This
observation is sufficient to explain a weak ordering, i.e.ũi > ũi+1 > · · ·, but it does not
imply neither the strict ordering nor the exponential decreasing. The possible persistence of
such an exponential rate for alli > 5 constitutes a plausible extrapolation, lacking, however,
experimental evidence and theoretical explanation.

F5—Being finite, the sequence{ũi} has a minimum: ũ = ũ(N) 6 ũi . Since the
sequence is (at least) not increasing, the minimumũ(N) is the last one, but not necessarily
ũ2N−1 because, depending on the curve, the sequence of theκi could stop before the maximal
order being attained. This happens, for instance, when a curve is confined in a subspace of
the embedding space.

The meaning of this minimum is that foru < ũ every curvature is quasiharmonic. A
reasonable possibility is that, forN → ∞, ũ(N) → 0. However, since the sequence is
very rapidly decreasing, for all practical purposes we may assumeũ(N) ≈ 0 already forN
in the range of our experiments. It is important to note that the alternative possibility, i.e.
the existence of afinite limit for ũ(N) asN →∞, would only enforce the conclusions we
shall draw in the next section. In other words, the assumption of makingũ vanish is the
most severe one with respect to our arguments.

4. Final remarks

To summarize, we have discovered a discretized degree of harmonicity, leading to a criterion
of order, revealed by a hierarchical set of observables. This connection between harmonicity
and order is effective for anharmonic systems undergoing a stochastic transition, but not
for integrable systems, for example the Toda model. For these reasons, our experiments
should be read with a different attitude than in the pure search for stochasticity, as a way to
have an insight into the structure of the ordered domain. Actually, the fact thatκ1, . . . , κi
are not only dependent on the initial conditions whenu < ũi but alsoquasiharmonicis an
important featureagainst stochasticity; while the non-harmonic behaviour ofκi+1, κi+2, . . .

in itself does not imply anything about stochasticity.
Furthermore, in the previous section we insisted on two different features: (1)

independence ofN for ũi at a fixed orderi; (2) the vanishing ofũ(N) as N grows.
Of course, being based on extrapolations from actual simulations, these last features, the
second one in particular, remain on a conjectural domain. Both aspects could be strictly
related to the distinction between the so-called WST and SST respectively. Remember
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that the SST has been defined through criteria accessible to numerical experiments (energy
equipartition, Lyapunov exponents, independence from initial conditions etc), whereas the
WST is not an experimental result: it is the supposed threshold from the quasi-integrable
behaviour in the domain filled (in a measure theoretic sense) by the KAM tori. The Arnol’d
diffusion, taking extremely long times, could indeed be responsible for transitivity on the
energy surface, despite the existence of other conservation laws.

From the point of view of statistical mechanics, the relevant question is which of them
is the ‘true’ stochasticity transition (TST), i.e. the transition (if any) from a behaviour non-
compatible with standard statistics to an ordinary one. Experimentally, we see that the
breakdownũ1 (or ũρ) coincides with the SST. Moreover, at fixedN , the extrapolation at
energies below̃u(N) says that all curvatures attain the harmonic values. Then, we might
conjecture that the WST has to do withũ(N), possibly that WST= ũ(N). In any case this
domain belowũ(N) seems to rapidly shrink to 0 asN grows, exactly as the WST should
do in the opinion of the weak chaos supporters. However, the request thatall curvatures
behave harmonically is extremely demanding, and it is more plausible that WST> ũ(N).

What happens then in this intermediate region, where, at fixed energy density, a number
of curvatures behave harmonically independently ofN? In principle, such a domain could
either deserve the denomination ‘weakly stochastic’ or ‘weakly ordered’. A definite choice
should solve in advance the problem of establishing which kind of ergodic measure holds
there, and in particular if such a measure is continuous or not with respect to the Liouville
measure. If the answer is yes, then the domain is weakly stochastic and TST= WST;
otherwise, it is weakly ordered and TST=SST. As far as we know, this problem is unsolved.

This last sentence seems to contrast the agreement, observed for example in [12],
between dynamical and Monte Carlo simulations on geometrical observables based on Ricci
and scalar curvatures. However, this agreement is achieved within standard experimental
times, whereas, if it would depend on the weak chaos diffusion, averages below the SST
should require longer and longer relaxation times. Therefore we are led to conclude that,
more than to the weak chaos, the agreement is due to the intrinsic insensitivity of those
observables to the initial conditions. Of course, this fact does not exclude their sensitivity,
actually very high, to the SST. In the same sense, the crossover in the scaling law of
the largest Lyapunov exponent does not exclude that at low energy the motion takes
place on manifolds of reduced dimensionality [10, 11]. Even if our experiments do not
face this problem directly (possible local disorder on such reduced manifolds), they stress
the peculiarity of the SST, the robustness of quasiharmonicity and the (at least practical)
difficulties in deriving the standard Liouville measure from dynamics.

More likely, the presence of harmonic constraints on the observables may be related
to such phenomena as the ‘superexponential stability’ studied in [16], in the spirit of
perturbation theory. In terms of a perturbation parameter given by the distancer from an
invariant KAM torus, the speed of Arnol’d diffusion is evaluated indeed as exp[− exp(1/r)].
This seems beyond any possible numerical verification (see, however, [17] for the standard
map), but our experiments up to the SST, i.e. in the non-purely perturbative domain, show
the possibility that such estimates play a role even at the border of strong chaos.
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